Monday, 12 November 2012

Mechanical Vibrations By G.K. Grover

Buy Mechanical Vibrations


Table Of Contents
Fundamental of Vibrations
  • Introduction
  • Definitions
  • Vect6z method of representing harmonic motion
  • Addi!,nn of two simple harmonic motions of the same frequency
  • Pheromelion of beats
  • Complex method of representing harmonic motion
  • Work done by a harmonic force on a harmonic motion
  • Fourier series and harmonic analysis
  • Analytical method for harmonic analysis
  • Numerical method for harmonic analysis
  • Notes on certain type of functions
  • Practice Problems
Undamped Free Vibrations of Single Degree of Freedom System
  • Introduction
  • Derivations of differential equation
  • Solution of differential equation
  • Torsional vibrations
  • Equivalent stiffness of spring combinations
  • Spring in series
  • Springs in parallel
  • Inclined springs
  • Rayleigh's energy method
  • Practice Problems
Damped Free Vibrations of Single legree of Freedom Systems
  • Introduction
  • Different types of damping
  • Free vibrations with viscous damping
  • Over — damped system
  • Critically — damped system
  • Under — damped system
  • Logarithmic decrement
  • Viscous dampers
  • Fluid dashpot
  • Eddy current damping
  • Dry friction or coulomb damping
  • Frequency of damped oscillations
  • Rate of decay of oscillations
  • Solid or structural damping
  • Slip or Interfacial damping
  • Practice Problems

Hyperbolic axial dispersion model


Dalai, Radharaman (2012) Hyperbolic axial dispersion model. MTech thesis.

[img]PDF (HYPERBOLIUC AXIAL DISPERSION MODEL)
419Kb

Abstract

Axial dispersion model is most reliable tool for analyzing the transient response of flow system inside a bundle of pipes. The proposed hyperbolic model considers propagation velocity of flow disturbance to be finite and even of the order of flow velocity to describe flow maldistribution. The traditional parabolic model is included as a special case under the hyperbolic model. Both backmixing and forward flow are considered to model the hyperbolic dispersion equation. This model is proposed for a flow system having multiple pipes with a pulse tracer input. The expressions for system outlet response using residence time distribution have been derived. It will help researchers to determine dispersion coefficient with higher accuracy than the parabolic model.
Item Type:Thesis (MTech)
Uncontrolled Keywords:Dispersion
Subjects:Engineering and Technology > Mechanical Engineering
Divisions:Engineering and Technology > Department of Mechanical Engineering
ID Code:3911
Deposited By:Mr RADHARAMAN DALAI
Deposited On:13 Jun 2012 12:00
Last Modified:13 Jun 2012 12:00
Supervisor(s):Sahoo, R K

Reduction of NOx in diesel engine using diesel water emulsion


Dani, Debasis (2012) Reduction of NOx in diesel engine using diesel water emulsion. BTech thesis.

[img]PDF (b.tech thesis)
1751Kb

Abstract

Diesel engines exhausting gaseous emission and particulate matter have long been regarded as one of the major air pollution sources, particularly in metropolitan areas, and have been a source of serious public concern for a long time. There has been numerous research in the field of reduction of these pollutants since diesel engines came to major use. Major emissions from a diesel engine are NOx, SOx, CO and particulate matter (PM).amongst these pollutants CO and Sox and some quantity of particulate matters are reduced by some after treatment methods, outside the engine, in the catalytic converter etc. unlike these NOx can’t be oxidized to get some clean product. Nowadays NOx emissions are reduced by selective catalytic reduction.
Using an emulsion of diesel in water as a fuel has been a recent field of study in this field. Water/diesel (W/D) emulsified formulations are reported to reduce the emissions of NOx, SOx, CO and particulate matter (PM) without compensating the engine’s performance. In this project a new kind of emulsion is prepared by mixed surfactant method, major concern being the long term stability of the same. Then performance and emission tests were carried out by using the fuel in a two cylinder water cooled diesel engine. The results were matched against that of diesel and comparison graphs were plotted to see what are the advantages and disadvantages of using the emulsion over diesel.
Item Type:Thesis (BTech)
Uncontrolled Keywords:NOx,diesel water emulsion
Subjects:Engineering and Technology > Mechanical Engineering > Automobile Engineering
Divisions:Engineering and Technology > Department of Mechanical Engineering
ID Code:3401
Deposited By:Mr. Debasis Dani
Deposited On:22 May 2012 11:19
Last Modified:22 May 2012 11:19
Supervisor(s):Murugan, S

Mechanical and tribological behaviour of coconut shell char reinforced polymer cosmposite


Chandole, Pranayajoshi (2012) Mechanical and tribological behaviour of coconut shell char reinforced polymer cosmposite.MTech thesis.

[img]PDF
1220Kb

Abstract

Recently conductive polymer composites obtained by filling polymer matrixes with various Carbon blacks were also reported. Particulate fillers of which carbon black is notable example are widely used as reinforcing fillers in polymer industry. These fillers are added to polymers to achieve desirable and enhance the product service qualities. Commercially available carbon blacks are obtained from thermal cracking of natural gas and furnace black produced by incomplete combustion of oil filled stocks. This carbon black is relatively expensive due to its dependence on dwindling supply of crude oil. It is therefore essential to develop viable alternative source of fillers from renewable resources such as agricultural waste, bamboo stem, oil palm empty fruit bunches and coconut shells which are carbonaceous in nature and rich in organic materials. This biomass can be converted into carbon black thereby reducing unwanted, low value agricultural reduces and underutilized crop into useful, high value materials. Increase of environmental awareness has led to a growing interest in researching ways of an effective utilization of coconut shell, from which shell is particularly valuable due to its high contains 70% carbon, 1% ash, 30.1% lignin, 19.8% cellulose and 68.7% hemicellulose. It is felt that the value of this agricultural residue can be upgraded by bonding with resin to produce composite suitable for tribological applications. Keeping this in view the present work has been under taken to develop a polymer matrix composite (epoxy resin) using coconut shell char and to study its tribological behavior, the new hard porous carbon material coconut shell char has been developed by carburizing coconut shell as the main raw material at three different temperature range 600°C and 8000C. The composite are prepared with different volume raction of coconut shell Char. Experiments have been conducted under laboratory condition to assess the erosive wear behavior of the developed composite.  
Item Type:Thesis (MTech)
Uncontrolled Keywords:Coconut shell powder and char.
Subjects:Engineering and Technology > Mechanical Engineering > Machine Design
Divisions:Engineering and Technology > Department of Mechanical Engineering
ID Code:4090
Deposited By:Chandole Pranayajoshi
Deposited On:13 Jun 2012 11:10
Last Modified:13 Jun 2012 17:24
Supervisor(s):Acharya, S K

Damping of composite materials with riveted joints


Chinthapatla, Nikhil (2012) Damping of composite materials with riveted joints. BTech thesis.

[img]PDF
1085Kb

Abstract

Vibration and noise reduction are crucial in maintaining high performance level and prolonging the useful life of machinery, automobiles, aerodynamic and spacecraft structures. It is observed that damping in materials occur due to energy release due to micro-slips along frictional interfaces and due to varying strain regions and interaction between the metals. But it was found that the damping effect in metals is quite small that it can be neglected. Damping in metals is due to the micro-slips along frictional interfaces. Composites, however, have better damping properties than structural metals and cannot be neglected. Typically, the range of composite damping begins where the best damped metal stops.
In the present work, theoretical analysis was done on various polymer matrix composite (glass fibre polyesters) with riveted joints by varying initial conditions. Strain energy loss was calculated to calculate the damping in composites. Using FEA model, load variation w.r.t time was observed and the strain energy loss calculated was utilised in finding the material damping for Carbon fibre epoxy with riveted joints. Various simulations were performed in ANSYS and these results were utilised to calculate the loss factor, Rayleigh‘s damping constants and logarithmic decrement.
These results can be used in designing machine tools, aircrafts, spacecraft‘s, satellites, missile systems and automobiles effectively to maximise the damping capacity and to improve their performances and the product life.
Item Type:Thesis (BTech)
Uncontrolled Keywords:Composites,Damping,Riveted joints
Subjects:Engineering and Technology > Mechanical Engineering > Structural Analysis
Divisions:Engineering and Technology > Department of Mechanical Engineering
ID Code:3775
Deposited By:NIKHIL CHINTHAPATLA
Deposited On:06 Jun 2012 14:37
Last Modified:06 Jun 2012 14:37
Supervisor(s):Nanda, B K

Multi Objective Optimization of Cutting Parameters in Turning Operation to Reduce Surface Roughness and Cutting Forces


Choudhury, Suryansh (2012) Multi Objective Optimization of Cutting Parameters in Turning Operation to Reduce Surface Roughness and Cutting Forces. BTech thesis.

[img]PDF
953Kb

Abstract

Turning is one the most important machining operation in industries. The process of turning is influenced by many factors such as the cutting velocity, feed rate, depth of cut, geometry of cutting tool cutting conditions etc. The finished product with desired attributes of size, shape, and surface roughness and cutting forces developed are functions of these input parameters. Properties wear resistance, fatigue strength, coefficient of friction, lubrication, wear rate and corrosion resistance of the machined parts are greatly influenced by surface roughness. Forces developed during cutting affect the tool life hence the cost of production. In many manufacturing processes engineering judgment is still relied upon to optimize the multi-response problem. Therefore multi response optimization is used in this study to optimization problem to finds the appropriate level of input characteristics.
The objective of this project is to evaluate the optimal setting of cutting parameters cutting velocity (N) , depth of cut(d) , feed(f) and variation in principal cutting edge angle (Φ) of the tool to have a minimum cutting force and surface roughness(Ra)
In this project dry turning of aluminium 6061 as a work piece and carbide insert tool (SCMT 09T308-TN5120) is performed. The range of cutting parameters are cutting speed(11.86, 18.65,30.52m/min) ,feed rate(0.044,0.089,0.178 mm/rev), depth of cut(0.5,0.75,1.0mm) and the angle (0,3,6 degree)
This study highlights the use of Fuzzy logic and use of Taguchi design of experiment to optimize the multi response in turning operation. For this purpose Taguchi design of experiment was carried out to collect the data for surface roughness and various cutting forces. The results indicate the optimum values of the input factors and the results are conformed by a confirmatory test
Item Type:Thesis (BTech)
Uncontrolled Keywords:optimization,cutting forces,surface roughness
Subjects:Engineering and Technology > Mechanical Engineering > Production Engineering
Divisions:Engineering and Technology > Department of Mechanical Engineering
ID Code:3411
Deposited By:Suryansh choudhury
Deposited On:22 May 2012 15:06
Last Modified:22 May 2012 15:06
Related URLs:
Supervisor(s):Sahoo, S K

Design and Analysis of Underactuated compliant mechanisms


Behera, Deepak (2012) Design and Analysis of Underactuated compliant mechanisms. BTech thesis.

[img]PDF
1274Kb

Abstract

Precession and accuracy are important in several mechanisms in practical use. Compliant mechanism provides a solution for such mechanical design problems. It has several other advantages over rigid body mechanism. That is why nowadays a lot of research work is going on in this field. But the main disadvantage of this kind of mechanism is its complexity to analyse and design. So, in order to make the analysis simpler pseudo rigid body model (PRBM) technique is often adopted. A mechanism is called underactuated when it has more degrees of freedom than number of inputs or actuations. For such mechanisms we have to perform the kinematic analysis along with force analysis to obtain the solutions. In this work, two underactuated partially compliant mechanisms have been discussed. In the first case, a partially compliant slider-crank mechanism without any input actuation is taken into account. The kinematic and static force equations are solved numerically to find out equilibrium position of the mechanism. Here, the input is provided by two torsional springs. The second case considered is a two-degree of freedom five bar slider mechanism with one input actuator only. Kinematic analysis along with force analysis using principle of virtual work is illustrated to find the solution. The nonlinear algebraic equations obtained are solved simultaneously based on Newton-Raphson method using a computer program in C and the graphs are plotted between input data and other parameters. In both the cases, input data is taken from references for comparison point-of-view.
Item Type:Thesis (BTech)
Uncontrolled Keywords:Underactuation, compliant mechanism ,Flexural hinges ,Partial compliant mechanism ,pseudorigid body (PRBM) model ,virtual work principle
Subjects:Engineering and Technology > Mechanical Engineering > Machine Design
Divisions:Engineering and Technology > Department of Mechanical Engineering
ID Code:3449
Deposited By:Mr. DEEPAK BEHERA
Deposited On:22 May 2012 15:39
Last Modified:22 May 2012 15:39
Supervisor(s):Srinivas, J